20 research outputs found

    Effects of bursty protein production on the noisy oscillatory properties of downstream pathways

    Get PDF
    Experiments show that proteins are translated in sharp bursts; similar bursty phenomena have been observed for protein import into compartments. Here we investigate the effect of burstiness in protein expression and import on the stochastic properties of downstream pathways. We consider two identical pathways with equal mean input rates, except in one pathway proteins are input one at a time and in the other proteins are input in bursts. Deterministically the dynamics of these two pathways are indistinguishable. However the stochastic behavior falls in three categories: (i) both pathways display or do not display noise-induced oscillations; (ii) the non-bursty input pathway displays noise-induced oscillations whereas the bursty one does not; (iii) the reverse of (ii). We derive necessary conditions for these three cases to classify systems involving autocatalysis, trimerization and genetic feedback loops. Our results suggest that single cell rhythms can be controlled by regulation of burstiness in protein production

    The organelle of differentiation in embryos: the cell state splitter

    Full text link

    A Performance Analysis of Vector Length Agnostic Code

    No full text
    Vector extensions are a popular mean to exploit data parallelism in applications. Over recent years, the most commonly used extensions have been growing in vector length and amount of vector instructions. However, code portability remains a problem when speaking about a compute continuum. Hence, vector length agnostic (VLA) architectures have been proposed for the future generations of ARM and RISC-V processors. With these architectures, code is vectorized independently of the vector length of the target hardware platform. It is therefore possible to tune software to a generic vector length. To understand the performance impact of VLA code compared to vector length specific code, we analyze the current capabilities of code generation for ARM's SVE architecture. Our experiments show that VLA code reaches about 90% of the performance of vector length specific code, i.e. a 10% overhead is inferred due to global predication of instructions. Furthermore, we show that code performance is not increasing proportionally with increasing vector lengths due to the higher memory demands

    Quantification of variability in trichome patterns

    Get PDF
    While pattern formation is studied in various areas of biology, little is known about the intrinsic noise leading to variations between individual realizations of the pattern. One prominent example for de novo pattern formation in plants is the patterning of trichomes on Arabidopsis leaves, which involves genetic regulation and cell-to-cell communication. These processes are potentially variable due to , e.g., the abundance of cell components or environmental conditions. To elevate the understanding of the regulatory processes underlying the pattern formation it is crucial to quantitatively analyze the variability in naturally occurring patterns. Here, we review recent approaches towards characterization of noise on trichome initiation. We present methods for the quantification of spatial patterns, which are the basis for data-driven mathematical modeling and enable the analysis of noise from different sources. Besides the insight gained on trichome formation, the examination of observed trichome patterns also shows that highly regulated biological processes can be substantially affected by variability

    Influence of cell-to-cell variability on spatial pattern formation

    No full text
    Many spatial patterns in biology arise through differentiation of selected cells within a tissue, which is regulated by a genetic network. This is specified by its structure, parameterisation and the noise on its components and reactions. The latter, in particular, is not well examined because it is rather difficult to trace. The authors use suitable local mathematical measures based on the Voronoi diagram of experimentally determined positions of epidermal plant hairs (trichomes) to examine the variability or noise in pattern formation. Although trichome initiation is a highly regulated process, the authors show that the experimentally observed trichome pattern is substantially disturbed by cell-to-cell variations. Using computer simulations, they find that the rates concerning the availability of the protein complex that triggers trichome formation plays a significant role in noise-induced variations of the pattern. The focus on the effects of cell noise yields further insights into pattern formation of trichomes. The authors expect that similar strategies can contribute to the understanding of other differentiation processes by elucidating the role of naturally occurring fluctuations in the concentration of cellular components or their propertie
    corecore